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Abstract

The dynamic energy imparted to structures can cause material failure. The present investigation considers such a

failure for a simply supported beam which is subjected to a blast loading idealised as an initial velocity distributed

uniformly throughout the span. The theoretical solutions are developed using a rigid, perfectly plastic idealization and

are exact within the context of dynamic plasticity. A simple failure criterion, shown to be derived from Continuum

Damage Mechanics, is used in the calculations. Attention is focused on the motion of the beam after it fails and be-

comes detached from supports. It is shown that a considerable amount of energy remains in the beam after failure,

which depends on the beam geometry. Part of this energy is consumed in changing the beam shape after severance, with

the remainder as kinetic energy of the beam travelling as a rigid body.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The inelastic response of structures under large impact loads has found important applications in the

design of energy absorbing and collision protection devices for transportation systems (Johnson, 1990). In

particular, the dynamic behaviour of free–free beams can be relevant in the aerospace industry. It was

found, for example, that a rigid, perfectly plastic free–free beam subjected to a triangular shaped pressure

pulse absorbs only 1/4 of the input energy, with the remaining 3/4 manifested as a rigid body motion (Jones
and Wierzbicki, 1987).

Yu et al. (2001) examined the problem of a free–free beam which collides with a cantilever beam. The

authors used an analytical–numerical approach to predict the partitioning of energy between the two

structures. They also obtained an approximate transverse shear failure map by assuming that failure

occurred when any shear sliding equalled the beam thickness. The dynamic behaviour of free–free beams

was also studied by Yu et al. (1996). The authors used a numerical approach to investigate elastic effects on
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Nomenclature

D damage parameter

E elastic modulus

H beam thickness

k material constant

K kinetic energy

Ki initial kinetic energy

Kr residual kinetic energy

Kbm bending energy absorbed by the moving hinge
kbr bending energy absorbed at mid-span (Fig. 4)

Kbs bending energy absorbed by the stationary hinge

Kss shear energy absorbed at the support

2L beam length

m beam mass per unit length

M bending moment

M0 bending moment for plastic collapse

Q transverse shear force
Q0 transverse shear force for plastic collapse

r1 and r2 energy ratios

R�m defined by Eq. (101)
�S material constant

th0 time when the moving hinges reach the beam centre

tf final time

t time

tfa time to failure
t3 duration of final phase of motion

tr time when a rigid body motion is initiated

V0 impulsive velocity

V0c threshold impulsive (critical) velocity
�V0c dimensionless critical velocity
�x dimensionless coordinate

W displacement

W3 beam displacement in the final phase of motion
W�0 mid-span transverse displacement at failure

Wf final beam displacement

Wf1 beam displacement at the support after the transient phase

Wf2 beam displacement at the mid-span after the transient phase

Ws transverse shear displacement at the beam support

W�s transverse shear displacement at the beam support at failure
_Ws transverse shear velocity at the beam support
_W1r rigid body velocity of the beam
(Æ) time derivative of ( )

(ÆÆ) second time derivative of ( )

a defined by Eq. (10)

b defined by Eq. (36)
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eD threshold damage strain

m defined by Eq. (1)
r0 flow stress
�n dimensionless plastic hinge position
�n0 dimensionless initial plastic hinge position

N. Jones, M. Alves / International Journal of Solids and Structures 41 (2004) 6441–6463 6443
the response of free–free beams subjected to impact by a projectile at the mid-span or to triangular dis-
tributed impulsive loadings.

Yang et al. (1998) studied the response of rigid, perfectly plastic beams subjected to a step-load at

various positions along the beam span. This theoretical study was further explored by Yang and Xi (2003)

for a concentrated impact load at any position along the beam span, and comparisons were made with

experimental data and a numerical model.

A common approach for the analysis of structures impacted with large loads assumes that the material is

rigid-perfectly plastic, i.e. a material with no elastic deformation and a constant flow stress, regardless of

the strain level. Numerical schemes are used to perform the complex analysis of real structures under
impact loading (Bammann et al., 1993; Holmes et al., 1993). However, the details yielded by these analyses

are in some cases less important from an engineering perspective than some global parameters, for example,

maximum permanent displacement and the associated impact energy absorbed, at least during the pre-

liminary design phase of a component. Such features of a problem can also be obtained from the rigid-

plastic methods of analysis.

One interesting aspect of the dynamic analysis of a structure is that, whereas in the static case, transverse

shear effects are potentially important only for short beams, this is not so when a beam is loaded

dynamically (Jones and Oliveira, 1979). Transverse shear can dominate the dynamic response even for long
beams, causing material failure due to shear (Jouri and Jones, 1988; Alves and Jones, 2002b).

The behaviour of a simply supported rigid, perfectly plastic beam subjected to an impulsive load may

present several patterns of motion, depending on the material and geometrical characteristics. For in-

stance, shearing deformations can develop and remain at the supports throughout motion, while in other

cases, it is followed by bending at the mid-span. Shearing can also develop in an initial phase at the

supports and then followed by a phase which is dominated by propagating plastic hinges moving towards

the mid-span. The kinetic energy remaining in the beam is absorbed in a final phase of motion with

bending at the mid-span. These features of a dynamic beam response have been studied previously by
many authors (Jones, 1989).

It appears that little attention has been paid to the motion of a beam after failure which is of interest in

forensic analysis, for example. A beam, upon failure, might still possess a residual kinetic energy. Part of

this kinetic energy is dissipated internally and causes a post-failure shape change of the beam, while, to

conserve momentum, part remains in the beam to propel it as a rigid body.

This article aims to extend the analysis detailed by Jones (1989) for the case of a simply supported beam

under a blast load by studying the behaviour of the beam after material failure due to excessive shear

strains. A failure criterion is necessary in order to estimate the conditions for the beam to break free from
its support. The failure criterion here used is shown to be derived from Continuum Damage Mechanics.

The beam depicted in Fig. 1 has a length 2L and a doubly symmetric cross-section. The beam is loaded

with an initial impulsive velocity V0, which is distributed uniformly across the entire span, and is made from

a rigid, perfectly, plastic material with a flow stress r0.

It is convenient to introduce the parameter
m ¼ LQ0=2M0; ð1Þ



V0

x=0

L L

Fig. 1. A simply supported beam under an impulsive load.
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which is a dimensionless ratio between the transverse shear collapse force, Q0, and the bending moment,M0,

acting on a beam cross-section.
It is shown in Jones (1989) that various theoretical solutions for simply supported beams loaded

impulsively are related to the value of m. Here, these solutions, which are valid for small deformations and

rotations, are expanded for the case when failure occurs at the supports. The use of a small deformation

theory is justified since finite-deflection (i.e., membrane) effects are not significant during the initial shearing

phase when the displacements remain small. They are also not significant after severance since no mem-

brane forces will develop because there is no axial restraint.
2. Beams with m61

For this class of beams, it is shown in Jones (1989) that only transverse shear sliding occurs at the
supports, Fig. 2. Hence, the whole beam remains straight and moves down as a rigid body. Eventually, for a

sufficiently large input energy, complete severance occurs at the supports and the detached beam travels

throughout space with a finite velocity.

The threshold condition for severance can be determined only upon the application of a failure criterion.

Jones (1976) has suggested that complete severance occurs when
Ws P kH ; ð2Þ
where 06 k6 1 is a material constant and H is the beam depth.

The transverse shear displacement for this beam according to Jones (1989) is
Ws ¼ �Q0t2=2mLþ V0t; ð3Þ
where m is the beam mass per unit length and t is time. Substituting Eq. (3) into the equality of Eq. (2)

gives
W
.

L  L

s

Fig. 2. Transverse shear slides at the supports of a simply supported beam with m6 1 loaded impulsively.
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tfa ¼
mLV0
Q0

1

"
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kHQ0

mLV 2
0

s #
; ð4Þ
which is the time when the beam is severed. Hence, the beam travels after complete severance with a

velocity
_W�s ¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kHQ0

mLV 2
0

s
: ð5Þ
It should be noted that Eq. (5) gives a threshold value for the initial impulsive velocity which causes

severance, i.e.
V0c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kHQ0

mL

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kHmM0

mL2

r
ð6Þ
at _W�s ¼ 0.

Thus, for such a class of short beams, the beam with Q ¼ 0 at x ¼ �L would travel freely with the

velocity given by Eq. (5) for initial impulsive velocities V0 > V0c and with the straight profile depicted in
Fig. 2.

It is proved in Appendix A that the changed boundary conditions are consistent with a straight profile

and that no further plastic deformation takes place, i.e. the solution is statically and kinematically

admissible and, therefore, exact.
3. Beams with 16m63/2

For this category of beams, the boundary conditions change once severance occurs due to a transverse

shear failure at the supports during, or in the limiting case, at the end of the first phase of motion.

A possible velocity profile necessary to establish a theoretical kinematically admissible solution at sev-

erance is shown in Fig. 3. The velocities at x ¼ 0 and x ¼ L are different which, after some time, become

equal and allow a rigid body motion to be reached.
3.1. Motion before severance

The velocity _Ws at the supports and _W at the centre are given in Reference (Jones, 1989) and can be

integrated to yield the displacements at �x ¼ 1 and at �x ¼ 0,
Ws ¼ M0ð3� 4mÞt2=mL2 þ V0t ð7Þ

and
W0 ¼ M0ð2m� 3Þt2=mL2 þ V0t; ð8Þ

respectively, where �x ¼ x=L 2 ½0; 1� is a dimensionless coordinate.

Now, Ws ¼ W�s ¼ kH in Eq. (7) when using the failure criterion in Eq. (2), so that the beam fails at the
support when
tfa ¼ La=f2ð4m� 3ÞM0g; ð9Þ

where
a ¼ mLV0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmLV0Þ2 � 4mkHM0ð4m� 3Þ

q
: ð10Þ
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Fig. 3. Transverse velocity profile of one-half of a simply supported beam loaded impulsively with 16 m6 3=2: (a) at severance and (b)

severed beam.
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At this instant, the positive velocities of the beam at the support, _W�s, and at the centre, _W�0, are given by
_W�s ¼ V0 � a=mL ð11Þ

and
_W�0 ¼ V0 � ð3� 2mÞa=ð4m� 3ÞmL; ð12Þ

while the respective displacements are
W�s ¼ kH ð13Þ

and
W�0 ¼
aL

2M0ð4m� 3Þ V0

�
� ð3� 2mÞa
2mLð4m� 3Þ

�
: ð14Þ
From Eq. (11) one obtains the threshold velocity which causes material failure
V0c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð4m� 3ÞkHM0

mL2

r
; ð15Þ
when using Eq. (10) with V0 ¼ V0c .

3.2. Motion after severance

At severance, which is illustrated in Fig. 3(a), the initial conditions are shown in Fig. 3(b), which occur at
a time tfa given by Eq. (9), reset as t ¼ 0 for the remaining analysis.

During the subsequent motion shown in Fig. 3(b), the transverse velocity at any point of the beam is
_w ¼ _W1 þ ð _W2 � _W1Þð1� �xÞ; ð16Þ

where only one-half of the beam is analysed owing to symmetry about the mid-span.
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The equilibrium equations relating the bending moment, M , and the transverse shear force, Q, of an
unloaded beam are
1 Th
oQ=o�x ¼ mL€w and Q ¼ ð1=LÞoM=o�x ð17Þ
for small displacements and when neglecting rotatory inertia.

Using the velocity profile from Eq. (16), it follows that
d2M=d�x2 ¼ mL2½ €W1 þ ð €W2 � €W1Þð1� �xÞ�; ð18Þ
which can be integrated to give
Q ¼ mL½ €W1�xþ ð €W2 � €W1Þð�x� �x2=2Þ�; ð19Þ
since Q ¼ 0 at t ¼ 0 and �x ¼ 0.
Further integration yields
M ¼ mL2½ €W1�x2=2þ ð €W2 � €W1Þð�x2=2� �x3=6Þ� þM0; ð20Þ
when noting that M ¼ M0 at the central plastic hinge.

Now, Eqs. (19) and (20) with Q ¼ M ¼ 0 at �x ¼ 1 give a system of equations for €W1 and €W2, whose

solution is
€W1 ¼ 6M0=mL2 ð21Þ
and
€W2 ¼ �6M0=mL2: ð22Þ
Integrating Eq. (21) gives
_W1 ¼ 6M0t=mL2 þ _W�s; ð23Þ
since at t ¼ 0, _W1 ¼ _W�s, while a further integration yields the displacement
W1 ¼ 3M0t2=mL2 þ _W�st þ kH ; ð24Þ
when using W1 ¼ W�s ¼ kH at t ¼ 0.

The same procedure can be used to obtain the velocity and displacement of the beam at the centre

(�x ¼ 0), yielding
_W2 ¼ �6M0t=mL2 þ _W�0 ð25Þ
and
W2 ¼ �6M0t2=2mL2 þ _W�0t þ W�0; ð26Þ
where _W�0 and W�0 are the velocity and the displacement at the centre of the beam at severance (t ¼ 0) given

by Eqs. (12) and (14), respectively.

3.3. Rigid body motion

After failure, the beam travels freely in space and the velocity at the mid-span decreases with time, Eq.

(25), while it increases at the support, Eq. (23). Hence, when these two velocities are equal at the time 1
e actual time is obtained by adding Eqs. (9) and (27).
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tr ¼
aL
2M0

m� 1

4m� 3
; ð27Þ
the beam travels as a rigid body, with no further plastic deformation.

The rigid body velocity of the beam is given by Eq. (23) for t ¼ tr, with _W�s given by Eq. (11),
_W1r ¼ V0 �
ma

ð4m� 3ÞmL : ð28Þ
For m ¼ 1 and m ¼ 3=2, Eq. (28) becomes
_W1r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
0 � 4kHM0=mL2

q
ð29Þ
and
_W1r ¼ V0=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV0=2Þ2 � 3kHM0=mL2

q
; ð30Þ
respectively.

It is demonstrated in Appendix A that the transverse velocity profile in Fig. 3 leads to an exact solution

for the problem posed.
4. Beams with m > 3/2

Consider now a beam with m > 3=2 and the possible transverse velocity profile before severance in Fig.
4(a) given by
_w ¼ V0 for 06�x6 �n0 ð31Þ

and
_w ¼ _Ws þ ðV0 � _WsÞð1� �xÞ=ð1� �n0Þ for �n0 6�x6 1: ð32Þ
4.1. Motion before severance

The velocity and displacement of the beam at the support before severance are given by (Jones, 1989)
_Ws ¼ �8m2M0t=3mL2 þ V0 ð33Þ

and
Ws ¼ �4m2M0t2=3mL2 þ V0t; ð34Þ

respectively.

Eq. (34), with the failure criterion in Eq. (2), gives the failure time
tfa ¼ b=2mM0; ð35Þ
where
b ¼ 3mL2 V0

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
0 � 16kHm2M0=3mL2

q ��
4m: ð36Þ
At this instant, the portion 06�x6 �n0 of the beam has a velocity V0, while, for the span �n0 6�x6 1,
_w ¼ _W�s þ ðV0 � _W�sÞð1� �xÞ=ð1� �n0Þ; ð37Þ
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Fig. 4. Transverse velocity profiles after severance of one-half of a simply supported beam loaded impulsively with m > 3=2: (a) first

phase of motion, (b) second phase of motion and (c) third phase of motion.
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where
_W�s ¼ V0 � 4mb=3mL2; ð38Þ
with �n0 being the dimensionless hinge position during the first phase of motion given by
�n0 ¼ 1� 3=2m: ð39Þ
The displacement at a support is kH and, for the central part of the beam, 06�x6 �n0, is
W2 ¼ V0tfa ¼ bV0=2mM0: ð40Þ
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Again, it is possible to obtain the critical or threshold severance velocity by setting _Ws ¼ 0 in Eq. (33) and

substituting the respective time into Eq. (34) when Ws ¼ kH , resulting in
V0c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16kHm2M0

3mL2

r
: ð41Þ
4.2. Motion after severance

In the next phase of motion, Fig. 4(b), the plastic hinge starts to move towards the centre of the beam so

that
_w ¼ _W1 þ ðV0 � _W1Þð1� �xÞ=ð1� �nÞ for �n6�x6 1; ð42Þ

where �n ¼ n=L defines the dimensionless moving plastic hinge position. In order to integrate Eq. (42) to

obtain the beam displacement profile, it is necessary to evaluate _W1 and the time-dependence of the hinge
position.

Consider then the equilibrium equation for the portion �n6�x6 1 of the beam after severance
d2M
d�x2

¼ mL2 €W1

ð�x� �nÞ
ð1� �nÞ

þ mL2ðV0 � _W1Þ _�n
ð1� �xÞ
ð1� �nÞ2

; ð43Þ
which can be integrated to yield the transverse shear force
Q ¼ mL €W1

ð�x2=2� �n�xþ �n2=2Þ
ð1� �nÞ

þ mLðV0 � _W1Þ _�n
ð�x� �x2=2� �nþ �n2=2Þ

ð1� �nÞ2
; ð44Þ
since Q ¼ 0 at �x ¼ �n. Integrating the above equation with the boundary condition M ¼ M0 at �x ¼ �n, gives
the bending moment distribution
M ¼ M0 þ mL2 €W1

�x3=6� �n�x2=2þ �n2�x=2� �n3=6

1� �n
þ mL2ðV0 � _W1Þ _�n

� �x2=2� �x3=6� �n�xþ �n2�x=2þ �n2=2� �n3=3

ð1� �nÞ2
: ð45Þ
Eqs. (44) and (45), with the conditions Q ¼ 0 and M ¼ 0 at �x ¼ 1 give
€W1ð1� �nÞ þ ðV0 � _W1Þ _�n ¼ 0 ð46Þ

and
M0 þ mL2 €W1ð1� �nÞ2=6þ mL2ðV0 � _W1Þ _�nð1� �nÞ=3 ¼ 0; ð47Þ

respectively, which can be solved to give the acceleration at the support and the dimensionless velocity of
the travelling plastic hinge,
€W1 ¼
6M0

mL2ð1� �nÞ2
ð48Þ
and
_�n ¼ 6M0

mL2ð _W1 � V0Þð1� �nÞ
: ð49Þ
The velocity _W1 can be obtained from Eqs. (48) and (49) by noting that d _W1=dt ¼ ðd _W1=d�nÞðd�n=dtÞ, yielding
_W1 ¼ V0 þ _W�s

�
� V0

�
1
�

� �n0
�.

1
�

� �n
�
; ð50Þ
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which reduces Eq. (49) to
2 Th
_�n ¼ 6M0

mL2ð1� �n0Þð _W�s � V0Þ
ð51Þ
or
_�n ¼ �3M0=b: ð52Þ

This equation can be integrated to yield the plastic hinge position
Z �n

�n0

d�n ¼
Z t

tfa

6M0dt

mL2ð1� �n0Þð _W�s � V0Þ
; ð53Þ
which gives
�n ¼ �n0 þ
6M0ðt � tfaÞ

mL2ð1� �n0Þð _W�s � V0Þ
¼ 1� 3M0t=b ð54Þ
and allows Eq. (50) to be written
_W1 ¼ V0 �
2b2

3mL2M0t
: ð55Þ
The displacement profile of the beam can be divided into three distinct intervals, namely
06�x6 �n; w ¼
Z t

0

V0 dt; ð56Þ

�n6�x6 �n0; w ¼
Z t

0

_wdt ¼
Z tfa

0

_wdt þ
Z t�

tfa

_wdt þ
Z t

t�
_wdt ¼

Z tfa

0

V0 dt þ
Z tð�xÞ

tfa

V0 dt þ
Z �n

�x

_w
_�n
d�n ð57Þ
and
�n0 6�x6 1; w ¼
Z t

0

_wdt

¼
Z tfa

0

½ _Ws þ ðV0 � _WsÞð1� �xÞ=ð1� �n0Þ�dt þ
Z t

tfa

½ _W1 þ ðV0 � _W1Þð1� �xÞ=ð1� �nÞ�dt;

ð58Þ

when using dt ¼ d�n= _�n and where tð�xÞ ¼ bð1� �xÞ=3M0.

Integration of Eqs. (56)–(58) lead to
w ¼ V0t 06�x6 �n; ð59Þ

w ¼ b
3M0

ð1
(

� �nÞV0 �
2b
mL2

�n� �x

1� �n

"
þ ln

1� �n
1� �x

#)
�n6�x6 �n0 ð60Þ
and
w ¼ b
3M0

ð1
(

� �nÞV0 þ
b

mL2

2ð1� �xÞ½mð1� �nÞ � 1� þ �n� 1

1� �n

"
� 2 ln

1� �n

1� �n0

#)
�n0 6�x6 1: ð61Þ
At the end of this phase of motion, i.e. �n ¼
R _�ndt ¼ 0, from Eq. (54), or 2
is includes tfa (see Eq. (53)).
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(72)) a
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th0 ¼ b=3M0; ð62Þ
the displacements at �x ¼ 0 and �x ¼ 1 given by Eqs. (60) and (61) are
W2 ¼ bV0=3M0 ð63Þ
and
W1 ¼
bV0
3M0

� b2

3mL2M0

1
n

þ 2 ln½1=ð1� �n0Þ�
o
; ð64Þ
respectively.

The velocities at the support and at the mid-span at th0 are
_W1 ¼ V0 � 2b=mL2 ð65Þ
and
_W2 ¼ V0; ð66Þ
respectively, which imply an angular kinetic energy in one-half of the beam of
K ¼ 2L3

2

Z 1

1=2

ðmd�xÞf _hð�x� 1=2Þg2 ¼ 2L3

2

Z 1

1=2

m
V0 � _W1

L

 !2

ð�x� 1=2Þ2d�x ¼ mLðV0 � _W1Þ2

24
¼ b2

6mL3
;

ð67Þ
to be absorbed by the central plastic hinge (M0h3) during the third phase of motion in Fig. 4(c), leading to 3
h3 ¼ ðmL=24M0ÞðV0 � _W1Þ2 ¼
b2

6mL3M0

: ð68Þ
The duration of the third phase of motion, t3, is obtained from the conservation of angular momentum
M0t3 ¼ 2

Z 1=2

0

L3md�y _h�y�y ¼ 2mL2ðV0 � _W1Þ
Z 1=2

0

�y2 d�y; ð69Þ
or
t3 ¼ mL2ðV0 � _W1Þ=12M0 ¼ b=6M0; ð70Þ
where �y ¼ �x� 1=2 is an auxiliary reference system.

It is important to note that during the phase in Fig. 4(c), the beam is separated from the supports, so that

a rigid body motion occurs, as well as the rotation. Thus, the beam displaces Vrt3, where Vr is the rigid body

velocity given by the conservation of linear momentum of the beam using Eqs. (42) and (65)
Z 1

0

m½V0 � 2b=mL2 þ 2b=mL2ð1� �xÞ�Ld�x ¼ mLVr; ð71Þ
from which follows the rigid body velocity
Vr ¼ V0 � b=mL2; ð72Þ
which also equals
ote that no unloading occurs at the central hinge because the velocity at the mid-span is greater than the residual velocity (Eq.

nd is greater than the velocity at the severed end. The three velocities are equal at t ¼ t3.
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Vr ¼ ðV0 þ _W1Þ=2: ð73Þ
The total displacements at the severed end, Wf1 , and at the mid-span, Wf2 , at the end of the third phase in

Fig. 4(c) when _W1 ¼ _W2 ¼ Vr are
Wf1 ¼ W1 þ Vrt3 � h3L=2 ¼ bV0
2M0

� b2

3mL2M0

½7=4þ 2 lnð2m=3Þ� ð74Þ
and
Wf2 ¼ W2 þ Vrt3 þ h3L=2 ¼ b
2M0

V0

�
� b
6mL2

�
; ð75Þ
respectively. Thus, the difference in displacement between the mid-span and the severed end is
Wf2 � Wf1 ¼
b2

mL2M0

1

2

�
þ 2

3
lnð2m=3Þ

�
: ð76Þ
The time when rigid body motion commences is the sum of Eqs. (62) and (70),
tf ¼ b=2M0 ¼ mtfa: ð77Þ
4.3. Rigid-body motion

Once the velocities during the third phase of motion in Fig. 4(c) become equal, at t ¼ tf when
_W1 ¼ _W2 ¼ Vr, then all plastic deformation ceases, and the permanently deformed beam continues to travel

through space for t > tf as a rigid body, with the rigid body velocity Vr.
For the particular case when _W�s ¼ 0, the rigid body velocity is
Vr ¼ V0ð1� 3=4mÞ; ð78Þ
which reduces to
Vr ¼ V0=2 and Vr ¼ V0; ð79Þ
for m ¼ 3=2 and m ! 1, respectively.

It is proved in Appendix A that the above kinematically admissible solution is also statically admissible
and, hence, exact.
5. Discussion

5.1. Motion before failure

The basic motivation for this study is to investigate the further plastic deformation and subsequent rigid

body motion of a beam after failure. Taking, for example, the beam studied in Section 4 (m > 3=2), its
behaviour can be described as follows.

Initially, a beam subjected to a blast loading, which is characterised by an initial velocity V0, starts to
move according to the velocity profile indicated in Fig. 4(a), i.e. a central region of the beam moves with a

velocity V0 which is faster than the section of the beam undergoing transverse shear deformations near to

the supports.
For 0 < �x < �n0, the displacement is V0t, and for the portion �n0 6�x6 1, the displacement is obtained by

integrating Eq. (32),
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Fig. 5. Profile of a 100 mm long beam with a square cross-section of depth 10 mm, made from the aluminium alloy listed in Table 1, at

various phases of motion. m ¼ 5 and the initial (critical) velocity is 153.67 m/s with the circles marking the position of the plastic hinge

at various times.
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w ¼ V0t �
4m2M0

3mL2

ð�x� �n0Þ
ð1� �n0Þ

t2; ð80Þ
which is plotted in Fig. 5 for t ¼ tfa, at the threshold of failure.
5.2. Motion after failure

Sufficiently severe impulsive velocity loadings will produce large transverse shear displacements at the

supports, which causes a beam to fail at the time given by Eq. (35), when the velocity of the central part of

the beam is still V0, while at the supports it is given by Eq. (38). The plastic hinges at �n0 ¼ �ð1� 3=2mÞ
commence now to move inwards during the second phase of motion in Fig. 4(b) and travel with a velocity
given by Eq. (52). This transient phase of motion is completed at the time given by Eq. (62), when the

travelling plastic hinges coalesce at the mid-span. At the end of the second phase of motion, the beam

velocities at the mid-span and at the broken ends are given by Eqs. (66) and (65), respectively. Thus, the

profile of the severed beam continues to change since the transverse velocity at the centre, V0, is different to
that at the supports.

This change in profile occurs during the third phase of motion in Fig. 4(c). The central hinge continues to

load at t ¼ th0 and absorbs plastic energy until a time given by Eq. (77), when the beam ceases to change its

shape, i.e. _W1 ¼ _W2 ¼ Vr and possesses a final rigid body velocity given by Eq. (72).
Fig. 5 illustrates the various phases of motion for a 10 mm · 10 mm square cross-section aluminium alloy

beam with a flow stress r0 ¼ 300 MPa, k ¼ 0:16, total length of 2L ¼ 100 mm and subjected to an initial

velocity, V0 ¼ V0c ¼ 153:67 m/s.

It is interesting to note that the velocities at the support and mid-span for this particular beam

change according to Fig. 6. It can be seen that the initial support velocity, V0, decreases rapidly to

zero at the failure time, tfa, when the impulsive velocity is the critical one i.e., V0c . The severed end of

the beam then resumes its motion until the final rigid body velocity is achieved at t ¼ tf , according

to Eq. (77). The figure also shows two other cases for impulsive velocities higher than the critical
one.
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Fig. 6. Variation of transverse velocity at the support (thin line) and at the mid-span (thick line) of the aluminium alloy beam in Fig. 5

for V0 equal 153.67, 200 and 300 m/s. Time is dimensionless with respect to the failure time corresponding to each impulsive velocity.
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5.3. Residual kinetic energy

After severance, and after the stationary and travelling plastic hinges cease absorbing plastic energy, the

permanently deformed beam travels through space as a rigid body, possessing a finite kinetic energy.

For beams with m6 1, the velocity at the support when severance occurs, which is the same as the
residual velocity for the beam, is given by Eq. (5), yielding a residual, Kr, to initial, Ki, kinetic energy ratio of
Kr

Ki

¼ 1� 2kHQ0

mLV 2
0

: ð81Þ
For the case of a beam with 16 m6 3=2, the rigid body velocity, Eq. (28), is associated with a kinetic

energy ratio
Kr

Ki

¼ 1

�
� ma
ð4m� 3ÞmLV0

�2

; ð82Þ
which reduces to
Kr

Ki

¼ 1� 4kM0

mLV 2
0

ð83Þ
and
Kr

Ki

¼ 1

2

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� 2kM0

mLV 2
0

s !2

ð84Þ
for m ¼ 1 and m ¼ 3=2, respectively, and the particular case of a beam with a solid rectangular cross-section

having m ¼ L=H .

Further, when assuming _W�s ¼ 0, this energy ratio becomes
Kr

Ki

¼ 3m� 3

4m� 3

� �2

; ð85Þ
which is independent of the impulsive velocity. For m ¼ 3=2, this ratio is 1/4, which means that a beam

retains 25% of the initial kinetic energy after complete severance.
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Fig. 7. Residual to initial kinetic energy ratio for different mP 3=2 and _W�s ¼ 0.
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For beams with m > 3=2, the ratio of residual to initial kinetic energy, according to Eq. (72), is
Kr

Ki

¼ 1
	

� b=mL2V0

2
; ð86Þ
which reduces to
Kr

Ki

¼ 4m� 3

4m

� �2

; ð87Þ
when _W�s ¼ 0, according to Eq. (38). It is evident from Fig. 7 that, for longer beams, the residual kinetic
energy can be significant. For instance, for the beam examined in Fig. 5, m ¼ 5, and the residual kinetic

energy is Kr ¼ 0:723Ki. It is clear that the kinetic energy in a beam after severance could inflict damage on

any object caught in the beam trajectory.

5.4. Energy partitioning

The energy dissipated during the various phases of motion in the beam analyses may be partitioned into

bending and shear energies. Considering the case mP 3=2, the shear energy at the supports during the first

phase of motion, i.e. for 06 t6 tfa and for one-half of the beam, is given by
Kss ¼
2mM0

L
V0t
�

� 4m2M0t2

3mL2

�
: ð88Þ
The bending energy has three components. One is due to bending at the stationary plastic hinge during the

first phase of motion before severance,
Kbs ¼ M0ðV0t � WsÞ=ðL� n0Þ ¼ 8m3M2
0 t

2=9mL3; ð89Þ
which is valid for 06 t6 tfa.
Another component is the bending energy absorbed during the propagation of the bending hinge after

severance during the second phase of motion, valid for tfa 6 t6 th0 ,
Kbm ¼ �ðM0=LÞ
Z t

tfa

o _w=o�x
h i

dt ¼ 2b2 � bþ 2mM0tð Þ
9mL3M0t

: ð90Þ
The angular kinetic energy in Eq. (67) during the third phase of motion causes additional displacements at
the severed end and at the mid-span, as observed by Eqs. (74) and (75), respectively. Eq. (67) gives the

plastic bending energy consumed in the third phase of motion and can be written as
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Kbr

Ki

¼ 3

16m2
1

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V0c=V0ð Þ2

q �2

; ð91Þ
when using Eq. (41) and making it dimensionless with respect to the input energy. Eq. (91) shows, for a

given value of m, that the dissipation of the initial kinetic energy by bending, once the transient phase after
severance ceases, is largest when the impulsive velocity equals the critical value V0c .

The transient phase in Fig. 4(b), when the plastic hinge propagates from �x ¼ �n0 to �x ¼ 0, and the final

bending phase in Fig. 4(c), both of which develop after beam severance, are unique features of the present

impact problem. It is then interesting to evaluate some ratios relating the various energies in these phases of

motion. For instance, the ratio between the bending energy dissipated during the hinge propagation phase

in Fig. 4(b) and the bending energy absorbed by the stationary plastic hinge at the mid-span in Fig. 4(c), is

given by
Kbr=Kbm ¼ 3=4ð2m� 3Þ: ð92Þ
A plot of this equation is shown in Fig. 8, where it is evident that, for mP 1:875, the bending energy ab-

sorbed during the hinge propagation phase after severance is greater than the bending energy absorbed by

the stationary hinge at the mid-span during the final post-severance phase.

The plastic energy absorbed after severance during the third and second phases is given by the ratios
r1 ¼
Kbr

Kss þ Kbs

¼ 3

8m

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V0c=V0ð Þ2

q
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V0c=V

2
0ð Þ

p ð93Þ
and
r2 ¼
Kbm

Kss þ Kbs

¼ m� 3=2

m

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V0c=V0ð Þ2

q
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V0c=V0ð Þ2

q ; ð94Þ
respectively, when made dimensionless with respect to the total energy absorbed before severance during

the first phase of motion.

For the particular case when V0 ¼ V0c , these ratios become
r1 ¼
3

16m
ð95Þ
and
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Fig. 8. Ratio between the bending energies after severance for mP 3=2.
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r2 ¼
2m� 3

4m
; ð96Þ
which are plotted in Fig. 9.

Fig. 10 shows the evolution with time of the shear and bending energies during the various phases of

motion for the beam illustrated in Fig. 5.

5.5. Critical velocity

The dimensionless critical velocities for the beams are shown in Fig. 11 when using
�V0c ¼ 2
ffiffiffi
m

p
; m6 1; ð97Þ
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�V0c ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4m� 3

p
; 1 < m6 3=2 ð98Þ
and
�V0c ¼ 4m=
ffiffiffi
3

p
; m > 3=2; ð99Þ
where �V0c ¼ V0c=ðkHM0=mL2Þ1=2.
5.6. Failure criterion

It is interesting to enquire whether or not the elementary transverse shear failure criterion given by Eq.

(2) has any theoretical support. Here, we explore a simple ductile damage mechanics model suggested by

Lemaitre (1985a,b).

The beam motion has been analysed using a rigid, perfectly plastic material model. This implies that any
elastic effects are of second order importance in the beam response. In this section, however, we use an

elastic, perfectly plastic material in order to allow for the necessary elastic modulus degradation used in a

failure criterion taken from the Damage Mechanics framework. Also, the so called crack closure effect is

here disregarded since failure at the supports occurs with no change in the direction of motion of a beam.

The damage evolution is obtained by integrating the equation
_D ¼ ~r2
eqR�m _p �Hðp � pDÞ=2E�S; ð100Þ
where D is the damage, E is the elastic modulus and �S is a material constant. �H is the Heaviside function

which is equal 1 or zero if the accumulated plastic strain, p, is greater or smaller than the threshold

accumulated plastic strain, pD, respectively. The term R�m is given by
R�m ¼ 2ð1þ �mÞ=3þ 3ð1� 2�mÞðrh=reqÞ2 ð101Þ

and takes into account the Poisson’s ratio, �m, and the triaxiality, a hydrostatic to equivalent stress ratio,

rh=req. Also, the effective stress, ~req, is defined by ~req ¼ req=ð1� DÞ, whereas the accumulated plastic strain

rate is defined by _p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þ_epij _epij

q
, which becomes an equivalent strain, eeq, when integrating for the case of

a proportional loading regime.

For a rigid, perfectly plastic material with an effective flow stress, r0, Eq. (100) can be integrated to give
D ¼ r2
0R�mðeeq � eDÞ=2E�S for eeq P eD: ð102Þ



Table 1

Damage mechanics material parameters for a mild steel (Alves and Jones, 2002b) and for aluminium (Lemaitre, 1992)

Material r0 (MPa) E (GPa) q (kg/m3) �S (MPa) �m eD Dcr

Steel 480 209.8 7800 0.6 0.287 0.17 0.45

Aluminium 300 72 2710 1.7 0.32 0.03 0.23

6460 N. Jones, M. Alves / International Journal of Solids and Structures 41 (2004) 6441–6463
If it is assumed that the transverse shear strain at the supports is (Alves and Jones, 2002a)
c ¼ Ws=ðlQ=2Þ; ð103Þ
where lQ ¼ ð3�
ffiffiffi
6

p
ÞH=2 is the length of a shear hinge in a simply supported beam based on the transverse

shear force acting in a beam with mP 3=2, then the equivalent strain becomes
eeq ¼ c=
ffiffiffi
3

p
¼ ½ð4=3Þ=ð

ffiffiffi
3

p
�

ffiffiffi
2

p
Þ�½Ws=H �: ð104Þ
Eq. (102) can now be written as
Wscr ¼ ð3=2Þð
ffiffiffi
3

p
�

ffiffiffi
2

p
ÞðE�SDcr=R�mr

2
0 þ eD=2ÞH ; ð105Þ
at incipient failure, i.e. D ¼ Dcr.

A comparison of Eqs. (2) and (105) gives at once that
k ¼ ð3=4Þð
ffiffiffi
3

p
�

ffiffiffi
2

p
Þð2E�SDcr=R�mr

2
0 þ eDÞ: ð106Þ
Eq. (106) for the specific mild steel material described in Alves and Jones (2002b) and listed in Table 1

predicts
k ¼ 0:18; ð107Þ
when assuming
R�m ¼ ð2=3Þð1þ �mÞ; ð108Þ
which corresponds to a state of pure shear, rh ¼ 0.

Similarly, for an aluminium alloy beam, the value of k according to Eq. (106) is also 0.18 when using the

data listed in Table 1. The equivalent strain in the above calculations corresponds to a pure shear state,

since the bending moment is zero at the simple support.

It is interesting to note that an increase of strain rate would increase the material flow stress, which

decreases quadratically the value of k when the other parameters remain unchanged. Hence, the greater the

impulsive load, the smaller the displacement to failure.

More general expressions are presented in Alves and Jones (2002a) which may be used for the prediction
of failure in beams having more complex stress states than the pure shear case examined here.
6. Conclusions

A theoretical analysis is presented for the severance and subsequent behaviour of a simply supported

rigid, perfectly plastic beam subjected to a blast loading which may be characterised as an impulsive

velocity distributed uniformly throughout the span. The results indicate that, after severance, the remaining

kinetic energy in the beam causes it to change shape due to stationary and travelling plastic hinges which

continue to absorb energy. This change of shape after failure has relevance for forensic investigations.

Moreover, after the plastic energy absorption ceases, a residual kinetic energy remains in a beam, which
depends on the beam length to thickness ratio, and can be a significant proportion of the initial kinetic
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energy. Hence, the detached beam has a rigid body motion which can be potentially harmful to any items

lying within the trajectory.

It is shown that a simple failure criterion, in which severance occurs when the shear displacement reaches

a certain fraction of the beam thickness, can be derived from a more rigorous approach based on Con-
tinuum Damage Mechanics.

It appears that similar theoretical solutions can also be obtained for fully clamped beams and simply

supported circular plates. The solution here presented could eventually be developed further for a wider

range of structures with various boundary conditions and dynamic loadings, although in some cases, simple

numerical schemes might be required. Exact theoretical solutions, as those presented here, can be used to

check the accuracy of finite element solutions, which can then be used for more complex problems asso-

ciated with the post-failure motion of structures subjected to large dynamic loads.
Appendix A. Static admissibility of the solutions

It is important to verify whether or not the above theoretical solutions violate the yield criterion, at any

point of the beam span and at any time. This is achieved by investigating the transverse shear force, Q, and
the bending moment, M , and seeking the conditions when they would pierce a square shaped yield surface

relating Q and M .

If it can be proven that the above bending moment and shear force distributions do not violate the yield

criterion, then the solution is called statically admissible. Moreover, since the theoretical solution is also

kinematic admissible, then it is exact in the context of a rigid, perfectly plastic theory.
The theoretical solution has been shown to be exact by Jones (1989) up to the point of severance. Thus, it

is necessary only to examine the subsequent response.

A.1. m < 1

For beams with m < 1, the moment distribution before severance is readily obtained as

M=M0 ¼ mð1� �x2Þ, with both the first and second derivatives negative along the beam span. The transverse

shear force is Q=Q0 ¼ ��x, giving Q=Q0 6 1 for any value of �x. Hence, no yield violation occurs during this
phase of motion.

After severance, the shear force and bending moment are zero at the supports and along all the beam

span according to the equilibrium equations when the beam has a straight profile. Therefore, it travels as a

rigid body and no yield violation occurs with the solution being exact.

A.2. 16 m < 3=2

For beams with 16 m6 3=2, Section 3, Eqs. (19), (21) and (22) give the transverse shear force after
severance
Q ¼ �6M0�xð1� �xÞ=L; ðA:1Þ
with Q ¼ 0 at �x ¼ 0 and at �x ¼ 1, as required from the symmetry and boundary conditions after severance.

The spatial derivative of Eq. (A.1) is zero at �x ¼ 1=2, giving a minimum value of the transverse shear force
Qmin=Q0 ¼ �3=4m: ðA:2Þ
Hence, the minimum transverse shear force ratio lies between �1=2 and �3=4.
It is also necessary to explore the bending moment behaviour along the beam span and throughout the

beam response. The bending moment for beams with 16 m6 3=2 is given by Eqs. (20)–(22), or
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M=M0 ¼ 1� 3�x2 þ 2�x3; ðA:3Þ
with M=M0 ¼ 1 and zero at �x ¼ 0 and at �x ¼ 1, respectively.

Since the spatial derivative of the bending moment at �x ¼ 0 and at �x ¼ 1 is zero, it is only necessary to

prove that the second derivative is positive at �x ¼ 1 and negative at �x ¼ 0. The expression
d2M=dx2 ¼ ð6M0=L2Þð�1þ 2�xÞ; ðA:4Þ
is negative for 06�x6 1=2 and positive for 1=26�x6 1, so that the solution is statically admissible and is

valid for 16 m6 3=2.

A.3. mP 3=2

For beams with mP 3=2, Section 4, the solution for the first phase of motion in Fig. 4(a) is proven to be
statically admissible in Jones (1989).

In the second phase of motion in Fig. 4(b), where the hinges propagate towards the beam centre, the

transverse shear force is
Q ¼ oM=ox ¼ ð6M0=LÞð�x� 1Þð�x� �nÞ=ð1� �nÞ3; ðA:5Þ
which is zero at �x ¼ 1 and at �x ¼ �n.
The derivative of Eq. (A.5)
oQ=o�x ¼ ð6M0=LÞð2�x� �n� 1Þ=ð1� �nÞ3; ðA:6Þ
is positive at �x ¼ 1 and negative at �x ¼ �n. Also, oQ=o�x ¼ 0 gives �x ¼ ð1þ �nÞ=2, which is the position where
the transverse shear force attains a minimum value of
Qmin ¼ �3M0=2Lð1� �nÞP � Q0=2: ðA:7Þ
The bending moment distribution in Eq. (45) can be reduced to
M=M0 ¼
ð�x� 1Þ2ð2�xþ 1� 3�nÞ

ð1� �nÞ3
; ðA:8Þ
whose first derivative, Eq. (A.5), is zero at �x ¼ �n and �x ¼ 1.

The second derivative of Eq. (A.8) is negative at �x ¼ �n, positive at �x ¼ 1 and is zero at �x ¼ ð1þ �nÞ=2,
where M=M0 ¼ 1=2.

In the final phase of motion, Fig. 4(c), when the rigid body rotation, h3, occurs, the bending moment

distribution and the transverse shear force are given by
M=M0 ¼ 1þ �x2ð2�x� 3Þ and Q=Q0 ¼ �3�xð1� �xÞ=m: ðA:9Þ
A minimum value for the transverse shear force occurs at �x ¼ 1=2 and its second derivative is always

positive so no yield violation occurs. The first derivative of the bending moment is zero at �x ¼ 0 and �x ¼ 1,

while the second derivative is negative in the interval 06�x < 1=2 and positive in the interval 1=2 < �x6 1,

with zero at �x ¼ 1=2. Hence, no yield violation occurs in any phase of motion and the solution is statically

admissible.
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